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We consider real-space renormalization group transformations for Ising-type 
systems which are formally defined by 

exp[ - -H ' (a ' ) ]  = ~  T(a, (r') exp[ - -H(a)]  
a 

where T((r, a '  ) is a probability kernel, i.e., 5Z,, T((r, (r') = 1, for every configuration 
a. For each choice of the block spin configuration a', let it,,. be the measure on spin 
configurations a which is formally given by taking the probability of a to be 
proportional to T(c, a') exp[ --H(c)] .  We give a condition which is sufficient to 
imply that the renormalized Hamiltonian H'  is defined. Roughly speaking, the 
condition is that the collection of measures/to, is in the high-temperature phase 
uniformly in the block spin configuration (r'. The proof of this result uses methods 
of Olivieri and Picco. We use our theorem to prove that the first iteration of the 
renormalization group transformation is defined in the following two examples: 
decimation with spacing b = 2 on the square lattice with ,B < 1.36p,, and the 
Kadanoff transformation with parameter p on the triangular lattice in a subset of 
the p, p plane that includes values ofp greater than Pc. 

KEV WORDS: Ising model; renormalization group pathologies; Dobrushin 
uniqueness theorem; completely analytic potentials. 

1. I N T R O D U C T I O N  

M a n y  r e c e n t  p a p e r s  h a v e  s h o w n  t h a t  p o s i t i o n - s p a c e  r e n o r m a l i z a t i o n  g r o u p  

t r a n s f o r m a t i o n s  w h i c h  ac t  o n  d i s c r e t e  sp in  s y s t e m s  o n  a l a t t i ce  a r e  n o t  
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defined in a variety of settings. Formally these transformations map a 
Hamiltonian H into a "renormalized" Hamiltonian H '  by the equation 

e-n'~'~= ~ T(a, a') e - n ~  (1.1) 

The spins in the original system are denoted by a. The "block" spins are 
denoted by a'. Here T(a, a ')  is a probability kernel, i.e., ~ ,  T(a, a')  = 1, 
for every configuration a. The spins take on a discrete set of values, e.g., 
{ - I ,  +1}.  Examples of such transformations include majority rule, 
decimation, and the Kadanoff transformation. (Introductory discussions of 
these transformations may be found in refs. 15 and 24.) 

The above equation defines H'  in a finite volume, but the existence of 
the infinite-volume limit of H '  is nontrivial. Thus the renormalization 
group map H--* H '  may not even be defined. Whether or not the map is 
defined depends not just on the Hamiltonian H, but also on the kernel T. 
If the temperature is very high or there is a large magnetic field, then there 
are rigorous results that show that the transformation is defined in some 
cases.~6. 8. 9) At low temperatures heuristic arguments were given by Griffiths 
and Pearce t5-7~ and by Israel tSI that the transformation may not defined. 
Rather than using the above equation, one can define the renormalization 
group transformation as a map on probability measures. Then the hard 
question is whether or not the renormalized measure is the Gibbs measure 
of some Hamiltonian. Van Enter et al. 124) proved that the renormalized 
measure is not Gibbsian for a variety of models at low temperature, including 
some examples with large magnetic field. Even when the temperature is 
above the critical temperature, the renormalized measure may not be 
Gibbsian. c21-'-31 Additional references on these renormalization group pathol- 
ogies are refs. 12 and 14. A recent review containing further references is ref. 22. 

A key tenet of the renormalization group is that while the correlation 
length of the original system diverges at a second-order transition, the 
introduction of the block spins should make the correlation length finite. 
More precisely, if one fixes a choice of the block spin configuration, then 
the system of original spins conditioned on this block spin configuration 
will not have a phase transition at the point where the original system does. 
The introduction of the block spins should shift the location of the critical 
point to a lower temperature. While this belief may be obvious in momen- 
tum-space transformations in which one integrates out a slice of momen- 
tum, it is not obvious for these position-space transformations. For three 
particular choices of the block spin configuration, including the checker- 
board configuration, Kennedy I~~ proved that for the majority rule in two 
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dimensions with two-by-two blocks, the critical temperature is indeed 
lowered by conditioning on the block spin configuration. Benfatto et al. (1) 
did a Monte Carlo study of a renormalization group transformation in 
which the block spin is equal to the sum of the spins in the block. (So the 
block spins do not just take on two values as the original spins do.) They 
considered the block spin configuration in which all the block spins are 
zero. They found that the introduction of this block spin configuration 
does indeed lower the critical temperature, but only by about 10%. 
However, preliminary Monte Carlo calculations of Ould-Lemrabott  (~s) on 
the two-dimensional Ising model with majority rule indicate that the intro- 
duction of the block spins lowers the critical temperature by at least a 
factor of two. 

To state our main theorem we need some assumptions and definitions. 
We consider only finite-range, translation-invariant Hamiltonians. We only 
consider Ising type systems, i.e., the spin space at each site is { -  1, + 1 }. 
The renormalization group kernel T(a, a') is a product over blocks of a 
local function of the block spin and the spins in the original lattice in that 
block. We assume that T(a, a') is always greater than zero. At first glance 
this last assumption appears to rule out many examples, in particular 
decimation and majority rule. However, it is often possible to reformulate 
the original system in such a way that T(a, a') is never zero. Consider 
decimation. Usually one takes T(a, a') to be 1 if for every site i at which 
there is both an original spin ai and a block spin a'i we have a~ = a'v 
However, we can instead just think of a as consisting only of the original 
spins that live at sites without a block spin. All the other original spins are 
just set equal to the corresponding block spin. With this reduced a, T(a, a') 
is always 1. For  majority rule we can obtain an equivalent system with 
T(a, a') > 0 by first summing out some of the spins in the original system. 
We do not provide the details of this procedure since we have not been 
able to verify the hypothesis of our main theorem for majority rule. 

Finally, we give the definitions needed for our theorem. Let V be a 
finite set of sites in the original lattice and r a boundary condition for V, 
i.e., a spin configuration on the sites outside of V. Let a' be a block spin 
configuration. Then we define a probability measure which depends on V, 
r, and a' by 

ix~,, v. ~(F) Z o  F(a) T(a, a') e -~(~') 
= EaT(a ,a , )e_U~a ) (1.2) 

Here F(a) is a function on the original spin configurations cr and It(F) 
denotes the expectation of such a function with respect to the probability 
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measure/t .  The sums over a are over the spin configurations on V. The 
Hamiltonian H(a)  is the Hamiltonian for the volume V using the boundary 
condition r outside of V. The kernel T(a, a') is the product over blocks 
which intersect the volume V of the kernel for that block. Note that the 
block spin configuration is fixed throughout the above. 

T h e o r e m  1.1. Suppose there exist constants c < ov and m > 0 such 
that for every finite subset V of the lattice, every two sites i, j ~ V, every 
boundary condition r, and every block spin configuration a' 

[Po', v, ~(aiaj)--It,,,. v, T(ai)It,~,, 1; r(aj)[ ~< c exp(- -m [ i - - j [ )  (1.3) 

Then the infinite-volume limit of the renormalized Hamiltonian H ' ( a ' )  
exists. It may be written in the form 

H'(a')= ~ H'x(~r') (1 .4 )  
X 

where H~c(o-') only depends on the block spins in X and the sum is over 
finite sets of block spin sites. Furthermore, there is a p > 0 such that 

~. e ~, Ilxll [IH~vll ~ < oo (1 .5 )  
X ~ 0  

where [[X[[ denotes the cardinality of the smallest connected set of block 
spin sites which contains X. 

We will show that if the Dobrushin uniqueness condition is satisfied 
uniformly in the block spins, then the hypothesis of our theorem is 
satisfied. We verify numerically that the Dobrushin condition is satisfied 
uniformly in two examples. The first example is decimation for the two- 
dimensional Ising model with scale factor b--2 .  Van Enter et al. proved 
that the renormalized measure is not Gibbsian in this example for 
T <  T,./1.73. We find that the Dobrushin condition is satisfied uniformly, 
and hence the renormalized Hamiltonian is defined, for T >  Tc/1.36. In 
particular it is defined in a neighborhood of the critical point. The second 
example is the Kadanoff transformation for the triangular lattice in two 
dimensions. The Kadanoff transformation contains a parameter p. In the 
limit p ~ ~ ,  the Kadanoff transformation becomes the majority rule trans- 
formation. We find that there is an interval of values of p for which the 
Dobrushin condition is satisfied uniformly in the block spins for tem- 
peratures slightly below the critical temperature. Thus there are values of 
p for which the Kadanoff transformation is defined in a neighborhood of 
the critical point. 
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The hypothesis of the theorem is similar to one of Dobrushin and 
Shlosman's many equivalent definitions of completely analytic interac- 
tions) 4) Indeed, if for every block spin configuration the interaction 
(including the renormalization group kernel) is completely analytic with 
the constants that appear in this property independent of the block spin 
configuration, then the hypothesis of the theorem holds. We prove theorem 
1.1 by developing a convergent polymer expansion. Such an expansion was 
developed for completely analytic interactions by Olivieri and Picco. (16" 17) 
We do not rely on any of their results, but instead give a different develop- 
ment of the expansion. Our motivation for doing this, besides the maxim 
that a good theorem deserves more than one proof, is to make this paper 
as self-contained as possible. We assume the reader knows polymer expan- 
sions, and for the examples we assume familiarity with the Dobrushm 
uniqueness theorem and related results at the level of Sections V.I and V.2 
of ref. 11. We do not assume familiarity with Dobrushin and Shlosman's 
work on completely analytic potentials (4~ or with the work of Olivieri and 
Picco) ,6, 17~ 

In the theorem we require that (1.3) hold for all finite volumes V. The 
various equivalent forms of complete analyticity also require that a certain 
condition hold for all finite volumes. There are examples which are known 
to have a unique Gibbs state, but are not completely analytic, t~-~ This leads 
one to consider the notion of "complete analyticity for nice sets," in which 
the condition is only required to hold for certain types of volumes. (13" 191 So 
it is possible that conditioning on a block spin configuration a'  always 
yields a measure p,. which has a unique Gibbs state with exponential decay 
of correlations, but (1.3) fails to hold for some finite volumes V. Even if 
this does happen (and we have no reason to believe it does), it might still 
be possible to prove the theorem, since the proof does not actually use 
(1.3) for every finite volume V. 

To prove that an expansion converges, one must usually require that 
some parameter, e.g., the inverse temperature, be small. For an expansion 
that will work for all completely analytic interactions, one must obtain this 
smallness from something besides the inverse temperature. Following 
Olivieri and Picco, our expansion involves a length scale L which will be 
chosen to be large compared to the correlation length of the system. 
Correlations between observables separated by at least a distance L are 
then very small. This is the smallness that drives the expansion. 

Our main theorem gives a sufficient condition for the existence of the 
renormalized Hamiltonian. It is conceivable that this condition is much 
stronger than what is needed for existence of the renormalized Hamiltonian. 
For example, there might be some block spin configurations for which the 
hypothesis of our theorem is not satisfied, but these block spin configurations 
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could have probability zero in the renormalized measure and so not cause 
any problems. For  a renormalization group transformation which is some- 
what different from those considered in this paper, it has been suggested 
that if the introduction of one particular block spin configuration puts the 
system in a high-temperature phase, then the renormalized Hamiltonian 
exists. 131 However, there is an example which shows that this is not true in 
generalJ 221 

In this paper we have only used the Dobrushin uniqueness theorem to 
show in particular examples that the hypothesis of our theorem is satisfied. 
This approach does not work in a neighborhood of the critical point in an 
important example, the majority rule for two-by-two blocks in two dimen- 
sions. One can hope that the more general methods of Dobrushin and 
Shlosman ~41 might work in examples like this. 

Our two examples are discussed in Section 2. Section 3 contains the 
proof of the main theorem. The appendix shows how to use the Dobrushin 
uniqueness condition to verify the hypothesis of the main theorem using 
only results presented in ref 11. 

2. E X A M P L E S  

In this section we consider two examples in which our theorem may 
be used to prove that the first iteration of the renormalization group is 
defined in a neighborhood of the critical point. We verify the hypothesis of 
the theorem by showing that Dobrushin's condition for uniqueness of the 
Gibbs state is satisfied uniformly in the block spin configuration. We begin 
by reviewing Dobrushin's condition. We follow the notation and exposition 
of Section V.1 of ref. 11 closely. For  each site j, lg(tr, trj) is the measure on 
the spin space { -  1, + 1 } at the site j. The a denotes the values of the 
spins at all the sites other than j. Define 

P0 = ~ sup{ II#j(~, ) - # ( c o , .  )11: ~- = C0k ifk 4= i} (2.1) 

Then p~j measures the amount of change in the distribution of the spin at 
site j when we flip the spin at site i. Next define 

PJ = )'~, P0 
i ~ j  

0~ = suP pj 
J 

(2.2) 

Dobrushin's theorem says that if 0~ < 1 then there is a unique Gibbs state. 
For  a finite-range Hamiltonian the above condition leads to much more, 
e.g., exponential decay of the truncated correlations. In our setting ct 
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depends on the block spin configuration 0-'. If ~ < 1 uniformly in 0-', then 
we get uniform exponential decay of the correlations. This decay can be 
used to prove hypothesis (1.3) of the main theorem. The argument is given 
in the appendix. The resulting proposition is as follows. 

P r o p o s i t i o n  2 . 1 .  Define ~ as above. If sup~, c~ < 1, then hypothesis 
(1.3) of Theorem 1.1 follows. 

R e m a r k .  In our examples, translation invariance will imply that 
supo, pj is independent ofj.  So supo, c~ = supo, pj for any choice ofj .  We will 
label the site j that we use by 0 in the examples. 

The first example we consider is decimation on the square lattice with 
b = 2, i.e., the spins on a sublattice with spacing 2 are considered as the 
block spins and the rest of the spins are summed out. We prove that this 
transformation is defined for fl < 1.3645fl,.. 

Decimation with b -- 2 is equivalent to two iterations of the decimation 
transformation with b = x/~. The first iteration is trivial; the renormalized 
Hamiltonian, H 1 , may be computed explicitly. The four nearest neighbors 
of each spin that must be summed over are block spins, so the sum may 
be done explicitly (see Fig. 1 ), 

with 

exp[ flao(0-1 + 0-2 + 0-3 + 0-4)] 
o'll 

= exp[a(0-10-2 + 0-10-3 + 0-10-4 + 0-20-3 + 0-20-4 + 0-30-4) 

+ b0-10"2030"4 "t- C'] (2.3) 

a = -~ ln[cosh(4fl)] 

b = ] ln[cosh(4fl)] - { ln[cosh(2fl)] 

There is a similar formula for c, but it plays no role in the renormalized 
Hamiltonian. The lattice that remains after this first iteration of decimation 
with b = x/~ has spacing v/2. We rescale it so that it has spacing 1. Then 
the terms alaz, ala4, a2a3 and 0-30-4 are nearest neighbor terms in the 
renormalized Hamiltonian, and the terms 0-10-3 and 0-20-4 contain lattices 
sites that are a distance v /2  apart. The term 0-10-,_0-30-4 is the product of the 
four spins in a plaquette. Thus the renormalized Hamiltonian from the first 
iteration of the b = v/2 decimation transformation is 

H,=2a s a,aj+a ~ a,aj+b s I-I 0-, (2.4) 
( i , j ) :  I i - j l = l  ( i , j ) :  I i - j ]  =x/~2 P i ~ P  
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4 A w 
~ 0  

w 2  

Fig. 1. For decimation with b =,r each spin in the original lattice that is summed out has 
only block spins as nearest neighbors. The spins at sites 1, 2, 3 and 4 are block spins and 
hence fixed. Thus the sum over the spin at site 0 may be done explicitly. 

where the first sum is over nearest neighbor bonds, the second sum is over 
diagonal bonds and the third sum is over plaquettes P. The factor of 2 in 
the first term appears because for each bond in this sum there is a contribu- 
tion from two different sums of the form (2.3). (In all of the above sums, 
each bond is only summed over once.,/ 

The second iteration of the b = , / 2  decimation transformation must be 
applied to the Hamiltonian H l, and so it is not trivially computable. We 

5 

1 / \ 2 

4 \ / 3 

7 

Fig. 2. After one iteration of the b = ~ decimation transformation, we check the Dobrushin 
condition for site 0. The effective Hamiltonian (2.4) couples the spin at this site to all the spins 
shown in the figure. The spins at sites 1, 2, 3 and 4 are block spins. 
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use our main theorem to prove that it is defined, and we use the proposi- 
tion at the start of this section to verify the hypothesis of the main theorem. 
Considering the types of terms that appear in H~, the spins we need to 
consider to test the Dobrushin condition are shown in Fig. 2. The site at 
which we test the condition is 0. The spins at sites 1, 2, 3, 4 are block spins. 
Following our convention of denoting block spins by 0"' and original spins 
by a, these four spins are denoted 0"tl, 0"2, 0"3, 0"'4. 

The terms in H, that involve the spin at site 0 are 

! ! t H = 2a(0.'l + a2 + a3 q- 0"4) 0"0 

+ (a + b0"'l 0"~) 0"o0"5 + (a + b0"~0"'3) 0"o0"6 

+ (a + b0"~0"'4) 0"067 + (a + b0.'10.'4) 0"00"8 

At fl =tic we find that sup,, ~ = 0.6667. This implies that supa, ~ < 1 in a 
neighborhood of tic- In fact, we find that sup,, a < 1 for fl < 1.3004fl,.. 

We can extend the interval of fl for which we can prove that b = 2 
decimation is defined with a little more work. In the above we did not test 
the Dobrushin condition on the original system. Indeed, such a test must 
fail at fl,.. With b = 2, some of the sites have two nearest neighbors that are 
block spins and two that are original spins, but there are also spins that 
have four nearest neighbors that are original spins. For such sites j the 
quantity pj is the same as it would be in the Ising model with no decima- 
tion, and so pj cannot be < 1 at fl,.. What was crucial in the above was that 
we first summed out some of the original spins before we tested the 
Dobrushin condition. ("Original spins" refers to spins in the original 
Hamiltonian, i.e., non-block spins.) The subset of spins we summed out 
was a sublattice with spacing x/~. Consider Fig. 3. The block spins are 
indicated by B's and the original spins by circles and X's. We do the sum 
over the original spins by first summing over the spins indicated by circles, 
and then over those indicated by X's. The spins in the first category break 
up into groups of five spins where each spin in the group has a nearest 
neighbor interaction only with other spins in the group, block spins, and 
spins in the second category. Thus the sum over these five spins is a finite 
calculation. The result of this calculation is a new Hamiltonian for the 
spins in the second category and the block spins. Having summed out the 
spins in the first category, we use our theorem for the sum over the spins 
in the second category. Computing the effective Hamiltonian that results 
from the sum over the spins in the first category and then testing that the 
Dobrushin condition for the spins in the second category holds uniformly 
in the block spins is a bit of computation. At fl = tic we find sups, a = 
0.3530. The Dobrushin condition sups, 0~ < 1 holds for fl < 1.3645flc. 
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Fig. 3. The original spins are denoted by circles and X's, the block spins by B's. The circles 
form clusters of five sites with no nearest neighbor interactions between two such clusters. So 
the sum over the spins at the circles may be done explicitly. 

The second example we consider is the Kadanof f  t ransformat ion on 
the tr iangular lattice. For  the tr iangular lattice the blocks are triangles 
containing three sites. So the block spins live on a lattice with spacing x/~. 
The blocking of  the tr iangular  lattice is shown in Fig 4. If  0-,, 0-_,, 0-3 are 
the three spins in a block and 0"' is the block spin, then the kernel for the 
Kadanof f  t ransformat ion for a single block is 

t(0"1,0"2, 0"3, 0"') = exp[p0"'(0"1 + 0"2 + 0"3)] 
2 cosh[  p(0-1 + 0"2 + a3)]  

where p > 0 is a parameter.  As p--* oe we obtain the majori ty rule. The 
Kadanoff  t ransformat ion may be defined in a much more  general setting. 
Given a blocking of  a lattice, the kernel is given by the above formula with 
o l -t- 0 2 + 0"3 replaced by the sum of the spins in the block. For  the hyper-  
cubic lattice in two or  more  dimensions, van Enter eta]. ~241 proved that for 
all p > 0, the renormalized measure is non Gibbsian at sufficiently low 
temperature. 

We can rewrite the kernel as 

t (a l ,  a2, a3, a ' )  = e x p [ p a ' ( a ,  + a,_ + a s) + q(al  a2 + a,  a 3 + 0-2a3) + c] 
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where q and c are functions of  p. They are determined by 

q(a] tr2 + al a3 + tr2a3) + c = - l o g {  2 cosh[  p (a l  + cr 2 + a3)]  } 

which after a little algebra implies 

q = _ 1 { log[ cosh(3p)  ] - log[  cosh(p)  ] } 

Note  that  q is negative, so these terms in the kernel have the opposite sign 
of  the nearest neighbor  interactions in the Hamiltonian.  Thus there is some 
cancellation between terms in the renormalizat ion g roup  kernel and nearest 
neighbor  interactions for which the two spins are in the same block. One-  
third of  the nearest neighbor  interactions are between spins in the same 
block. 

We now ask if there are any values of  p for which we can prove that 
the renormalized Hamil tonian  is defined in a ne ighborhood  of  fl = tic. To 
apply our  theorem we can try testing the Dobrushin  condition. Even if we 
choose p so that  q = - f l , .  to get the most  possible cancellation between the 
kernel and terms from the original Hamil tonian,  we find that at fl = fl,. the 
Dobrush in  condit ion is not  satisfied. Instead we do something similar to 
what  we did for decimation. We sum out  a subset of  the original spins 
before we apply our  theorem. The subset that  we sum out consists of  all the 
original spins that are at the top of  the tr iangular block that they are in. 

w �9 �9 w w w W 

Fig. 4. The blocking of the triangular lattice is shown with the block spins denoted by B. 
Each block contains the three sites in the original lattice that are adjacent to the block spin. 
The block spins live on a triangular lattice indicated with dashed lines. 
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(So the subset contains one third of  the original spins.) Each spin being 
summed out  interacts only with spins not  being summed out  and with 
block spins. Thus we can do this initial summat ion  explicitly. This initial 
summat ion  then produces a new Hamil tonwian for the remaining original 
spins. We then check the Dobrushin  condit ion for this new Hamil tonian.  
Figure 5 shows the spins that are involved in checking the condition. We 
want  to check the condit ion for the spin at site 0. The spins at sites 1, 2, 
and 3 are in the group that is summed out initially. For  example, the sum 
over the spin at site 1 amounts  to comput ing  f(0.o, 0"4, 0"7, 0"8, 0"9, 0"5, 0"'I), 
where 

~ exp[ (fl + q) alao + (fl + q) ata4 + fla,aT + fl~,as + flalag + flala5 
c r  I 

+ Pg'1 al + pa'l 0.4 + Pg'l ao]  

= exp[f(0.o,  0"4, 0" 7, 0"8' 0-9' 0"5' 0"tl)] 

Here a'l is the block spin which is denoted by B1 in Fig. 5. 
The choice of  p which yields q =fl,. is p = 0.6585. For  this value of  p 

we find sup,,  ~ = 0.9044 at fl = fl,. and sup,,  ct < 1 for fl < 1.0453fl,.. With 

8A ~ 9  

~ 5  lO 
7 

0 2 
4 II  

w v 

14 13 

Fig. 5. We test the Dobrushin condition at site 0. The spins at sites 1, 2 and 3 are first 
summed out explicitly. The resulting effective Hamiltonian couples the spin at 0 to all of the 
spins shown. 
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Fig. 6. p is the parameter in the Kadanoff transformation for the triangular lattice. The 
Dobrushin condition is satisfied uniformly in the block spins, and hence the renormalized 
Hamiltonian exists, in tile region to the left of the curve. 

fl=fl,, we find that sups, or < 1 for 0.6128 < p < 0 . 7 8 3 9 .  Figure 6 shows the 
region in the fl, p plane for which sups, ct < 1, and hence for which the first 
iteration of the Kadanoff  transformation is defined. 

3. PROOF OF THE M A I N  RESULT 

Throughout this section we will use a Fourier series representation of 
functions of Ising spins. If  V is a finite set of sites, then every function F(a) 
of the spins in V may be written in the form 

F(a) = ~ cxa x (3.1) 
.,Y 

where X is summed over all subsets of V (including the empty set), a " =  
I-Ii~xa i and the constants Cx are given by 

C x = ~  aXF(a) (3.2) 

The sum is over the spin configurations a on V. This sum is normalized so 
that ~ 1 = 1, i.e., we include a factor of 2 - I  vi in the definition of the sum. 
Throughout  this section all sums over spin configurations will be nor- 
malized so that the sum of I is 1. 
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As is standard for expansion methods, we work in a finite volume V, 
but all our estimates will be uniform in the volume. The existence of the 
infinite-volume limit will follow by the usual arguments. In the following 
most quantities depend on the finite volume V, the choice of boundary con- 
dition outside of it and the block spin configuration, but we do not make 
this dependence explicit. In the following the partition function we want to 
compute is of the form 

Z =  ~, T(cr, a') e - ' ' ~ '  
a 

where T(a, er') is the renormalization group kernel. This kernel is a product 
over blocks of a local kernel, and in the above we only include the terms 
corresponding to the blocks in V. Recall that we are assuming that the 
kernel T(a, a') is always greater than zero. Thus we may take its logarithm 
and simply include it in the Hamiltonian. So in the following, e - ~  will 
actually stand for T(a, a') e - H ~ .  We will usually just denote this by e -H. 
(Since the kernel is a product over blocks of a function of the spins in that 
block, the logarithm is a finite-range interaction.) 

The first step in the proof is to show that hypothesis (1.3) of the 
theorem implies a condition on free energies. By free energy we will always 
mean minus the logarithm of the partition function. Of course this differs 
from the usual definition by a factor of ft. 

Lemma 3.1. Suppose that hypothesis (1.3) holds. For a finite 
volume V, a boundary condition r outside of //, and a block spin con- 
figuration ix', let F~,. v, ~ be the free energy, i.e., minus the logarithm of the 
partition function. Then there is a constant c such that for every finite 
volume V, every boundary condition r, every block spin configuration a', 
and every two sites i , j  q~ V we have 

[ ~, rirjF~,,v,r (3.3) <~ ce-mli-Jl  
r i .  rj 

Here m is the same constant that appears in (1.3), but c is a new con- 
stant. 

Proof. When we compute F~,. v, ~, the Hamiltonian we use consists of 
those terms in the infinite-volume Hamiltonian whose support intersects V. 
To make a connection with the correlation functions that appear in 
hypothesis (1.3), we now define a slightly different free energy for the 
volume V. Let W be V w {i, j}. Let F',, v,~ be the free energy for the 
volume V computed using the Hamiltonian that consists of all the terms in 
the infinite-volume Hamiltonian whose support intersects W. Note that in 
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both F,~,. v, ~ and F ' ,  v, ~ we sum over the spins in V. The only difference is 
that in the latter we include some additional terms in the Hamiltonian. But 
since these terms do not involve any spins in V, the relationship between 
F~,, v, ~ and F'~,, v,~ is trivial. Their difference equals the sum of the terms in 
the Hamiltonian whose support intersects W but not V. In particular, 

rirjF' . ,  v.~ = Y'. rirjF~,., v., 
ri ,  rj  r i, rj  

if l i - j l  is large enough (depending on the range of the Hamiltonian). So 
it suffices to prove (3.3) with F,,. v. ~ replaced F', .  v. 3. 

In (3.3), V, a', and r do not change except for ri and rj. So we will 
denote F ' ,  v.~ by simply F(ri, rj). Define 

A = e x p [ - F ( +  1, + 1 ) ]  

B = e x p [ - F ( -  1, - 1 ) ]  

C = e x p [ - F ( +  1, - 1 ) ]  

D = e x p [ - F ( - 1 ,  + 1 ) ]  

Then 

f ir  iF,,," v.~= - l n ( A B / C D )  
r i ,  r j  

r gives a boundary condition for the volume W in an obvious way; we 
simply drop "t" i and rj. We will apply (1.3) to the volume W. A little com- 
putation shows that 

4(  A B  - CD ) 
lG,, w, ~(aitrj)--It,, ', w. ~(cri)/G', m ~(trj)-  (A + B + C +  D) z 

We will show that In (AB/CD)  is small by showing that A B / C D  is close 
to 1. We start with 

A_..BB_ 1 l A B -  CDI 

CD CD 

lAB - CDI ( A + B + C + D )  2 

- (A + B +  C + D )  2 CD 

Our assumptions on the Hamiltonian and T(a, a') easily imply that the 
change in the free energy when any single boundary spin is flipped is 

822/85/5-6-7 
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bounded by a constant. Hence there is a constant M such that the ratio of 
any two of A, B, C and D is bounded above by M. This implies 

( A + B + C + D )  2 

CD 
~< 16M 

So we have 

_ l A B -  CD[ 
AB 1 < . ( A + B + C + D ) 2 1 6 M  

= 4 M  [/%,, w ~(~i, Crj)--IZa, ' ~; r (a i )  pa,, W, t(Crj)[ 

and so (1.3) implies (3.3). I 

We divide the lattice into blocks which are L sites long on each side 
and so contain L" sites. These blocks are not the blocks used by the renor- 
malization group transformation. When we wish to emphasize this fact we 
will refer to these blocks as L-blocks. Whenever we refer to L-blocks, we 
mean only those L-blocks that appear  in this partitioning of the lattice. 
There are other blocks with side L that are not part  of this partition, but 
they will never appear in our proof. L will be chosen large and we also 
choose it so that our L-blocks are commensurate with the blocks in the 
renormalization group transformation, i.e., each renormalization group 
block is a subset of an L-block. To keep the notation under control, we 
now restrict our attention to two dimensions; the generalization to higher 
dimensions is straightforward. (In a few places where the dependence of a 
quantity on the number of dimensions is significant, we will state the result 
for an arbitrary number  of dimensions, denoting the number  of dimensions 
by v.) We divide the L-blocks into four types labeled by i =  1, 2, 3, 4 as 
shown in Fig. 7. (In v dimensions there would be 2 v types of blocks.) The 
crucial property is that the distance between any two L-blocks of the same 
type is at least L. Let Zg denote the summation over the spins in V which 
are in a type-/L-block.  Then we trivially have 

z = Z Z Z Z e x p ( - H )  (3.4) 
4 3 2 1 

We will use b to denote an L-block. The notation b:i means that b is 
a type-/block.  For  example, 1-lb:i is the product over all blocks b of type 
i. Let % denote the spin configuration on b. Then we have 

Y =FI Z 
i b : i  erb 
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1 2 1 2 1 2 

3 4 3 4 3 4 

1 2 1 2 1 2 

3 4 3 4 3 4 

1 2 1 2 1 2 

3 4 3 4 3 4 

Fig. 7. The division of the lattice into large L by L blocks. These blocks are grouped into 
four types as indicated by 1, 2, 3, 4. The spins in the blocks are then summed over in this 
order. 

We start by considering Z ,  e -n .  Write the Hamiltonian in its Fourier 
representation 

H = ~ Cx a x  
X 

Given a set of sites 2", we define )? to be the union of all the L-blocks that 
contain at least one site in X. We think of )7 as the support of the term 
Cx a x  viewed on the scale L. We use B to denote a union of L-blocks. In 
everything that follows, the only B's that appear are those that are small 
enough that the3, are contained in some 3L by 3L block. For such a B we 
define 

H B = s Cx ~rX 
X:X=B 

Since H is finite range, if L is chosen large enough, then every term in H 
will be in eS~actly one HB and so H =  ZB HB. Also, no term in H can con- 
tain sites from two different type 1 blocks. So HB = 0 if B contains more 
than one type 1 block. Thus we have 

B:nol b:l B:b~B 

822,85,5-6-8 
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where B: 17o 1 means that B does not contain any type 1 blocks. Define F ~ by 

exp( - F  1 ) = 2 e x p ( - H )  (3.6) 
1 

So F ~ is a function of the spins in blocks of types 2, 3, and 4. Equation 
(3.5) implies that the sum in (3.6) factors into a product over type 1 blocks 
of the sum over the spins in that block. Thus we have 

F'= ~ Ho+ Z F ''b (3.7) 
B : n o  1 b: 1 

where for type 1 blocks b we define 

(3.8) 

Next we try to compute Y'.: exp( - F  ~). However, F ~ can contain terms 
which involve spins in more than one type 2 block. Thus this sum does not 
factor into a product of independent sums over the type 2 blocks. Note that 
the terms in F ~ which prevent the factorization are supported on sets of 
sites with diameter greater than L. To proceed we need to distinguish these 
long-range terms that prevent the factorization from the short-range terms 
in F t that do not. We do this by looking at the supports of the terms in 
F ~ on scale L. Write F ~ in its Fourier representation, 

F ~= ~ clxa x 
X 

and define, for sets B which are a union of L-blocks, 

F~= • C~xCr x (3.9) 
X : . F = B  

So F = ~ , s F  ~. The definition of F I'b implies that F ~'b is supported in a 
neighborhood of b, and so is supported in the 3L by 3L square centered 
about b. Thus F~ is nonzero only if B is a subset of some 3L by 3L block. 
We say B is long range (LR) if it contains two L-blocks which are 
separated by a distance of at least L. Otherwise we say B is short range 
(SR). The terms that prevent the factorization are the F~ ' s  for B's that con- 
tain at least two type 2 blocks. Such B's are long range. So if we define 
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F~R= Z F~ 
B:SR (3.10) 

FIR= E F~ 
B :  L R  

then Y.z exp( i --FsR ) will factor into a product over the type 2 blocks. If 
FIR is small, then we can hope to use the factorization that occurs when 
FIR = 0 to develop a polymer expansion. 

We define F 2 by 

exp( - F  2) = Z exp( - r lSR) 
2 

We will show that the computation of F 2 is a local operation, just as the 
computation of F ~ was. The short range B contain at most one type 2 
block. Thus we may write FiR as 

and so 
B : S R  B:SR,  no2 b : 2  B : S R . b ~ B  

F 2 =  ~, F~ + Z F2"b 
B : S R ,  no2  b : 2  

where for type 2 blocks b we define 

We continue the above definitions inductively. Given F i, we decom- 
pose it as F~= F; Z s  s, where F s contains the terms in F ~ whose support 
X satisfies ) ( =  B. Then i _  , i F - - F s R + F L R  with 

i - -  i FSR-- ~ FB 
B : S R  

FiR = Z F~ 
B:  L R  

(3.11) 

The terms in FiR prevent the sum over spins in type i + 1 blocks from fac- 
toring, so we define F i+~ by 

e x p ( - F / + l ) =  ~ exp( i --FsR ) (3.12) 
i + 1  
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As before, the computation of F i+l is local: 

F i + l =  E Fin + E F i + l ' b  
B:SR. no{i+ I ) b:i + 1 

where for type i + 1 blocks b we define 

ab B:SR.b~B 

In this construction F i is a function of the spins in type j blocks for 
j > i. In particular, F 4 will not depend on the spins inside the finite volume 
V, only on the boundary spins outside of V. However, F 4 is not the free 
energy for this volume since we have dropped all the long-range terms in 
the above. To get the true free energy we proceed as follows. The expecta- 
tion that is associated with the Hamiltonian H is 

( f )  =Z-' Z E Z Z exp(--H)f 
4 3 2 1 

We define a modified expectation E by 

Ef = e x p ( F 4 ) ~ , e x p ( - - H + F [ R + F L R + F a R )  f (3.13) 
4 3 2 l 

It is straightforward to use our definitions to check that E l  = 1, and that 
the partition function is given by Z =  e x p ( - F  4) z~, where 

Z =  Eexp(  --FIR 2 3 --FLR--FLR) (3.14) 

Now we develop an expansion for/~. For  each allowable long-range 
B we define 

K(B) = exp( - F ~ -  r ~ -  F~) - 1 (3.15) 

("Allowable" means that B is a union of L-blocks and is small enough to 
fit inside some 3L by 3L square.) Then 

e x p (  - -FIR - g ~ .  R - F L R  ) = I - I  [ K ( B )  --]-- 1 ] 
B 

where the product is over all allowable long-range B. This equals 

~ 1 
2 K(el)... K(~,,) 

~o ~ s,..... S.:di~.,,c, 
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The sum is over distinct B~ ..... B,. This does not mean they must be dis- 
joint, only different. Inserting the above in (3.14), we have 

1 
2 =  ~. -~. ~ EK(B~)...K(B,,) (3.16) 

n ~ 0 BI, . , . ,  B n : d i s t i n c t  

The next ingredient we need for our expansion is a factorization 
property for the expectation E. More precisely, we seek a condition on 
functions f and g of the spins which implies 

Efg= Ef  Eg (3.17) 

Since E is not simply the measure in which all the spins are independent, 
this property is not trivial. We claim that there is a constant c which 
depends only on the number of dimensions such that if dis t(suppf,  
supp g ) >  eL, then (3.17) holds. To prove this we first consider the com- 
putation of Ef It begins with ~ fe -I~. The support o f f  may involve more 
than one type 1 block. So the inclusion o f f  in this sum messes up the fac- 
torization, but only in a region near the support o f f  More precisely, it is 
easy to see that there is a function f~ such that 

Efe -U=f]e -F '  
1 

and the support o f f  ~ is contained in the set of sites within a distance c~ L 
of the support o f f ,  where c~ is a constant. In general, 

~. f exp( - F~R ') = f '  exp( -- F i) 
i 

where f ;  is supported on the sites within a distance ciL of the support of 
f The analogous statement holds for g. Thus if the supports o f f  and g are 
sufficiently well separated, then the supports o f f "  and gi will not overlap 
and (3.17) follows. 

We define a collection B~, B2 ..... B,  to be connected if for every B i and 
Bj we can find Bk,, Bk, ..... Bkt, in the list B] ..... B,,  such that Bk, = Bi, Bk, = 
Bj, and for m = 1 ..... l -  1, the distance between Bk, and Bk,,+, is at most 
el L. Geometrically, B~ ..... B,, are connected if, when we "fatten" each set up 
by a boundary of width c~L/2, then the union of the fattened sets is a 
connected set. A connected collection {B~,B2 ..... B,} will be called a 
polymer and denoted typically by P. Two polymers P~ and P2 are said to 
be connected if P~ t_) P2 is connected; otherwise they are said to be discon- 
nected. The weight of a polymer P =  {B~ ..... B,} is defined to be 

w(P) = EK(S , ) . . .  K(B.) (3.18) 
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If P and P' are disconnected polymers, then the factorization property 
(3.17) and the definition of disconnectedness imply that W ( P w P ' ) =  
W(P) W(P'). Thus we have 

,,=on- ~ ~ W(P,)  ...  W(P,,) (3.19) 
PI ..... Pn : discontzet ' t  e d  

where the sum is over collections of polymers PI ..... P,, such that each pair 
P~, Pj is disconnected when i 4: j. 

To obtain a convergent expansion for log Z, we need to show that 
W(P) is small. We bound it by 

I W(P)I ~< f i  IIK(BDII~ (3.20) 
i = 1  

If IIF~ I1 o~ is small, then IlK(B)II o~ will be small. The smallness of the former 
should come from condition (3.3) in lemma 3.1. However, there is a counting 
problem that must be overcome. Fix a finite volume and consider the free 
energy F associated with it. So F is a function of the boundary spins. Write 
F in its Fourier representation 

F :  2 Cx(TX 
X 

Here the sets X range over subsets of the boundary spins. We have 

c x  = Y, 
tr 

where cr is summed over boundary spin configurations. (Recall that sums 
over spin configurations are normalized so that Z o l  = 1.) If X is long 
range, then there are two sites i and j in X with [ i - j [  >~L. So condition 
(3.3) implies that I cxl  <~ ce .... L. However, the number of subsets of even a 
single L-block grows as 2 z2 and so overwhelms the smallness of e .... c. Thus 
we cannot hope to bound F by, using IFI < ~ Z x l C x [ .  A second problem 
that we must deal with is that condition (3.3) applies to free energies and 
F ~ is not exactly a free energy, since we dropped long range terms. The 
following lemma handles the counting problem. 

I . e m m a  3.2. Suppose that condition (3.3) holds. Then there is a 
constant c o such that for any finite volume V and any boundary condition 
and any long-range B, 

IIFB( V, a~)l[ ~ <~ Co L'lnl e -"'L 
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where F( V, aa) is the free energy for the volume V with boundary condition 
ira. Here IBI is the number of L-blocks in B. The constant Co depends only 
on the constant c in condition (3.3) and the number of dimensions. The 
constant m is the same constant m that appears in condition (3.3). [The 
definition of ks( V, try), which is probably obvious at this point, may be 
found at the start of the proof.] 

R e m a r k .  The lemma applies to any volume V. The volumes we 
apply it to are rather unusual, in particular, they are not connected. For 
example, to obtain bounds on F ~ we would use a volume which consists 
of the L-blocks of type 1 that are contained in our original finite volume. 

Proof. Write F( V, as) in its Fourier representation 

F( V, = F, c x a  X 
3( 

FB(V,  ao) contains those terms Cx a x  such that X c B  and X contains at 
least one site from each L-block in B. We can extract precisely these terms 
from F( V, a~) by the following rather complicated operation. Let b~, b2 ..... 
b / be  the L-blocks in B. (So 1= IBI.) Since B is long range, we can order 
them so that b~ and b2 are at least a distance L apart. Label the spins in 
bk by a~ with i = 1, 2 ..... L ~-. Let i l ,  i2 ..... i t be integers between 1 and L 2 and 
consider 

E E E "'" E (7~l(7~2"tTlilF(V, Gt3) (3.21) 

This operation is designed to wipe out many of the terms in F( V, ~ze). The 
first sum is over all the spin configurations outside of B. This wipes out all 
the terms Cx a x  for which X is not a subset of B. Keeping in mind that 
there is a factor of a~ in the above, the second sum wipes out a term unless 
a x does not contain a~ for j < i  I and does contain or). Together with the 
remaining sums we see that the only terms that survive the summation in 
(3.21) are those that have X c B  and X contains at least one site in each 
of bl ..... bl with i~ ..... il being the first such site in each of the respective 
blocks. The L-blocks b~ and b2 are at least a distance L apart, so the spins 
tz), and ~2 are at least a distance L apart. Since (3.21) contains 

and all of the sums are normalized, the I['[I~ of (3.21) is bounded by 
c exp(-mL) by (3.3). To obtain all the terms in FB( V, #a) we must sum 
each of i~, i2,..., i~ from I to L 2, which produces a factor of L 2t. [ 
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Remark. Since B must be a subset of a hypercube with side 3L, IBI 
is bounded by a dimension-dependent constant. For  the purposes of this 
paper the value of this constant does not really matter because of the factor 
e -"a-. However, if one wants to extend these methods to infinite-range 
Hamiltonians with a power-law decay, then the value of this constant 
becomes very important. In the analogous estimate in ref. 17, Oiivieri and 
Picco have L'-", a better bound than our lemma. However, this would still 
require that the Hamiitonian decay faster than 1/r "-v, while decay that is 
faster than 1/r" should be sufficient. It appears that there is no hope of 
proving this optimal sort of result with the methods of this paper. 

The above lemma only applies to free energies, and the quantities F i 

are not quite free energies. To address this problem we first need the 
following technical lemma, which says that the operation of extracting the 
long-range part is continuous in some sense. 

Lemma 3.3. For any function F(a) and any B which is a union of 
L-blocks, 

IIF~ll ~ < c(lnl)  IIFII o~ 

where c([BI) is a constant which depends only on IB], the number of 
L-blocks in B. 

Proof Write F(a) in its Fourier representation 

Let 

V( = y ,  c X 

X 

= y ,  
O'Bc 

where the sum is over all spin configurations on the complement of B. We 
have 

IIF[I o~ ~< IlFll o~ (3.22) 

This sum over ag kills any term in the Fourier representation that is not 
supported inside B. So 

;(~ Z c. 
X:X~B 
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Thus F(a) contains all the terms that go into F s. Unfortunately, it contains 
some additional terms, those whose support is a proper subset of B. In fact, 
we have 

and so 

F(a ) - -  Z Fn. 
B':B" ~ B  

Fs(a ) =if(a)- Z FB, 
B':B" c B ,  B" # B  

Together with (3.22) this implies 

IIFBII ~ ~ IIFII ~ + ~ IIF~ I1~ 
B ' : B ' ~ B , B ' 4 : B  

The lemma now follows by induction on [BI. 1 

I . e m m a  3.4. Suppose that condition (3.3) holds. Then there are 
, t  constants c ,  p, Lo such that 

l iFt I1 ~ ~ c'LPe -,,L 

if L >/Lo and B is LR. Here m is the same constant that appears in (3.3). 

Proof. Fix a Bo that is LR. Now F ~'b only depends on terms Hx in 
the Hamiltonian for which X n  b :~ ~Z~; F i'b only depends on F i -  L n for B 
with b c B. Thus there is a constant c such that F~ depends on a term in 
Hx only if X is within a distance cL of B. This implies that we can change 
the volume V and the boundary condition outside of the set 

A(Bo) = {i: dist(i, Bo) ~< cL} 

and F"s0 will be unchanged. In particular, when computing F is0 we can 
replace V by V~ A(Bo) and replace the boundary condition by any bound- 
ary condition that agrees with the original one inside A(Bo). Thus we can 
just assume. V c  A(Bo). 

We define F; by 

e x p ( _ p i )  = ~ ~ ... ~, exp( - -H)  
i i - - I  1 

= Y' e x p ( - p i - i )  (3.23) 
i 
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Note that each pi  is the free energy of some volume, albeit a rather strange 
one. In the following, when we say that a quantity is O(LPe -" 'z)  we will 
mean that there is a constant c' and an integer L' such that the I[ [[o~ of 
the quantity is bounded by c'LPe .... L for L 1> L'. We now argue by induc- 
tion on i. The inductive assumption is that 

P~s-- F~s = O( Lpe .... L) 

for all B, both SR and LR. Since pi is the free energy of some volume, 
lemma 3.2 implies 

p i  = O(LPe-O,L) 

if B is LR. Thus, proving the inductive assumption will prove the lemma. 
The inductive assumption is trivially true for i =  1 since p t =  Ft.  

Assume the inductive claim is true for i - 1 .  The number of L-blocks 
in A(Bo) is bounded by a constant that only depends on the number of 
dimensions. Since V c A ( B o ) ,  the number of B such that F ~ 0  is also 
bounded by a constant which depends only on the number of dimensions. 
By the inductive assumption this implies 

(F~-t  - i - t  _ F a  ) = O ( L P e  .... L) 
B : S R  

Lemma 3.2 implies 

Thus 

Fs-i-1 = O(LPe- , ,L)  
B : L R  

( Z  F ~ - ' ) - - P ' - '  Z (F~- '  P~- ' )  ~" - ' - '  = _ _ F B = O(LPe - ' 'L)  
\ B : S R  B : S R  B : L R  

and so 

ln( exp[ 
B : S R  

= - l n ( ~ e x p ( - P i - ' ) ) + O ( L , e  -mL) 

= ~ i +  O(LPe- . ,L)  

By Lemma 3.3 this implies Fiso -~/--so = O ( L P e - ' L )  . | 
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Lemma, 3.4 implies that there is a function e(L) such that 

I w(P)I ~ etL) IpM 

with e(L)~O as L ~  ~ .  (Here ]P[ denotes the number of B's in the 
polymer P.) The weight of a polymer W(P) is a function of the block spins 
a'. All of the above estimates are uniform in the block spin configuration 
a' ,  so we have in fact shown that 

sup I W(P)I ~< e(L) Ipl (3.24) 
a'  

The representation (3.19) says that Z is a gas of polymers with a two-body 
interact ion--each pair of polymers must be "disconnected". Standard 
results on the polymer expansion ('-~ then imply that if we choose L suffi- 
ciently large, then we have a convergent expansion for In Z, 

l n Z , =  Y" ~bc(P, ..... P,,) W(P~)... W(P,,) (3.25) 
P I  ,..., P n  

where ~b c is the connected part  of our two-body interaction. In particular, 
~bc(P~ ..... P,,) vanishes whenever U~PI is not connected in the sense of 
connectedness that we defined for the polymers. 

The weight W(P) will depend on the block spins in P. It can also 
depend on some of the block spins outside of P, but we will now argue that 
there is a constant a such that W(P) depends only on the block spins cr'; 
with i within a distance aL of P. The following statements follow from the 
definitions of the various quantities. F Lb only depends on the block spins 
in b; F 2" b only depends on the block spins in b and the two type 1 L-blocks 
adjacent to b. By induction we then see that there is a constant ai such that 
F ~'b only depends on the block spins within a distance aiL ofb.  Thus K(B) 
only depends on the block spins within a distance aoL of B for some constant 
ao. Recall that if P = B ] ..... B,,, then the weight of P is EK(B~ ). . .  K(B,). The 
quantity K(B~)... K(B,,) only depends on the block spins within a distance 
aoL of P. However, the expectation E also depends on the block spins. So 
W(P) may depend on more block spins than K(B~)... K(Bn) did. However, 
it follows by an argument similar to that which proved (3.17) that the 
expectation E can only extend the range of dependence on the block spins 
by a finite amount,  i.e., there is a constant a such that W(P) only depends 
on the block spins within a distance aL of P. 

The renormalized Hamiltonian H '  is equal to - In Z = F 4 - In Z. Here 
F 4 is a local function of the block spins. Define supp(P~ w .. .  w P,,) to be 
the set of block spin sites that are within a distance aL of P~ w ... w P,,. 

822855-6-9 
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Since ~k,.(P~ ..... P , )  vanishes if P l W  . . .  w P,, is not connected, supp 
(PI  w . . .  w P , )  will be a connected set of block spins. The results of the 
previous paragraph show that a term - tp~(P~ ..... P,,) W ( P ~ ) . . .  W ( P , )  in 
the expansion of - I n  2 only depends on the block spins in supp(P~ w -.- w 
P,,). For each finite set of block spin sites, define H%(a') to be the sum of 
the terms with supp(P~ w .-. w P,,)--X. Now F 4 is a sum of terms, each 
of which only depends on a finite number of block spins. We include each 
of these terms in the appropriate H)o We have shown that the renor- 
realized Hamiltonian may be written in the form 

H'(a')=~ H~(a') (3.26) 
X 

where H~,(~r') only depends on the block spins in X. Our expansion shows 
that each H~, has an infinite volume limit and they satisfy 

~, H '  II x l [o~<~ (3.27) 
X ~  0 

Let [X[ denote the number of block spin sites in X. Then there is an 
L-dependent constant M such that for every term in (3.25) with supp 
(P1 w . . .  w P , ) = X w e  have [X[ 4 M Z'i'=, [P;[. It follows that we can even 
include a factor of exp(p IX[) in (3.27), and the sum will still be finite if 
It > 0 is small enough. We organized things above so that the sets X are 
connected. Thus we have completed the proof of Theorem 1.I. 

A P P E N D I X  

In this appendix we prove proposition 2.1. We will show that if 
supo, 0~< 1, then hypothesis (1.3) of theorem 1.1 holds. Recall that the 
original Hamiltonian is finite range and translation invariant. Since H is 
finite range, for the terms with p~ ~-0, the distances [ i - j [  are bounded by 
a constant. Thus we can choose y < 1 and e > 0 sufficiently small so that 

e~ q"-Jrp0-~< y < 1 (A.1) 
i: iv~ j 

for all cr'. 
Fix a block spin configuration tr'. The finite-volume measures Its', v 

were defined in Eq. (1.2). Since the hypothesis of the Dobrushin uniqueness 
theorem is satisfied, for every a'~ we get a unique infinite volume Gibbs 
state po,.  By condition (A.1) and theorem V.2.1 of ref. 11] there are con- 
stants c > 0, m < c~ such that for every block spin configuration cr' 

IlLo,(,ri, aj) -~. . ( ,r , )  p,.,(aj)l ~< ce-"' Ii-./I (h.2) 
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This tells us that for every block spin configuration, the infinite-volume 
measure of the constrained system has exponentially decaying correlations, 
and the decay is uniform in the block spin configuration. However, for 
condition (1.3) to hold, we need the same decay for all finite volumes and 
boundary conditions. This follows easily as we now show. 

The finite-volume measure #~.,. v may be thought of as an infinite- 
volume measure which is supported entirely on spin configurations that 
agree with the boundary condition r outside of V. Fix a V, r, and a'. For 
each site j, we define a measure vj on the spin space { -  1, 1}. For j e V, 
vj =lt, , .  {Jl" F o r j r  V, vj is the measure which assigns probability 1 to rj and 
probability 0 to - r j .  For a function f on spin configurations, vj(co, f )  
denotes the expectation of f with respect to vj. It is a function of co, the spin 
configuration on the set of sites different from j. Clearly, then, 

IG', v(r, vj(co, f ) )  =#~,. v(r, f )  

P,7 is defined by (2.1). We define rio by the same equation with ltj replaced 
by vj. It follows easily from the definition of vj that 

so fi,j ~< P0- Hence 

if j ~ V  

sup ~ e ~l;-jlp U~<r<l  
J i : i~ j  

The infinite-volume measure corresponding to the v/s is the meausure 
It~ ,. z. So Theorem V.2.1 of ref. 11 implies that (A.2) holds with IG, replaced 
by/G,, v. Thus the hypothesis of the main theorem is satisfied. 
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